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A super-hydrophobic array of grooves containing trapped gas (stripes) has the
potential to greatly reduce drag and enhance mixing phenomena in microfluidic
devices. Recent work has focused on idealized cases of stick-perfect slip stripes.
Here, we analyse the experimentally more relevant situation of a pressure-driven flow
past striped slip-stick surfaces with arbitrary local slip at the gas sectors. We derive
approximate formulas for maximal (longitudinal) and minimal (transverse) directional
effective slip lengths that are in a good agreement with the exact numerical solution
for any surface slip fraction. By representing eigenvalues of the slip length tensor, we
obtain the effective slip for any orientation of stripes with respect to the mean flow.
Our results imply that flow past stripes is controlled by the ratio of the local slip
length to texture size. In the case of a large (compared to the texture period) slip at the
gas areas, surface anisotropy leads to a tensorial effective slip, by attaining the values
predicted earlier for a perfect local slip. Both effective slip lengths and anisotropy of
the flow decrease when local slip becomes of the order of texture period. In the case
of a small slip, we predict simple surface-averaged isotropic flows (independent of
orientation).

1. Introduction
The development of microfluidics has motivated interest in manipulating flows in

very small channels (Stone, Stroock & Ajdari 2004; Squires & Quake 2005). Most
microfluidic devices operate with a pressure flow, which is faced with two main
difficulties at this scale and under typical operating conditions. Firstly, it is difficult to
drive such a flow due to huge hydrodynamic resistance. Secondly, it is very difficult
to mix, which normally requires a generation of a transverse flow.

An efficient strategy for moving fluid in a tiny channel is to exploit hydrodynamic
slip, which can be generated at hydrophobic surfaces and is quantified by the slip
length b (the distance within the solid at which the flow profile extrapolates to
zero) (Vinogradova 1999; Bocquet & Barrat 2007; Lauga, Brenner & Stone 2007).
Since for hydrophobic smooth and homogeneous surfaces the slip length can be of
the order of tens of nanometres (Vinogradova & Yakubov 2003; Cottin-Bizonne et al.
2005; Joly, Ybert & Bocquet 2006; Vinogradova et al. 2009), but not much more, it
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Figure 1. (a) Sketch of SH stripes: θ = π/2 corresponds to transverse, whereas θ = 0 to
longitudinal stripes; (b) situation in (a) is approximated by a periodic cell of size L, with
equivalent flow boundary conditions on gas–liquid and solid–liquid interface.

is impossible to benefit from such a nanometric slip for pressure-driven microfluidic
applications. However, super-hydrophobic (SH) textures can significantly amplify
hydrodynamic slip due to gas entrapment (Vinogradova et al. 1995; Cottin-Bizonne
et al. 2003) leading to a huge slip length at the gas area. The composite nature of the
texture, however, requires regions of lower slip (or no slip) in direct contact with the
liquid, so the effective slip length of the surface beff is reduced. Indeed, experimental
studies of flow past SH surfaces suggest that effective slip is of the order of several
microns (Ou & Rothstein 2005; Choi et al. 2006; Joseph et al. 2006).

SH surfaces consisting of a periodic array of grooves containing trapped gas
(Cassie’s state) are especially interesting since they allow us to highlight effects of
anisotropy. For anisotropic textures beff varies with the orientation of the wall texture
relative to flow and is generally a tensor (Bazant & Vinogradova 2008). Such surfaces
have been already used for reduction in pressure-driven flows (Ou & Rothstein 2005)
and enhancement of mixing (Ou, Moss & Rothstein 2007). The problem of flow past
stripes has been examined theoretically mostly with a typical geometry sketched in
figure 1 corresponding to a roughly flat (no meniscus curvature) liquid interface, so
that the modelled SH surface appeared as perfectly smooth with a pattern of boundary
conditions. In the case of thin channels (H � L, where H is the channel thickness,
and L is the period of the texture) the problem was solved for any two-component
(e.g. low slip and high slip) texture, and striped surfaces were shown to provide
rigorous upper and lower bounds on the effective slip over all possible two-phase
patterns (Feuillebois, Bazant & Vinogradova 2009). The quantitative understanding
of liquid slippage past such a surface in the thick channel (H � L) is however still
challenging. Pressure-driven flow has been analysed for an idealized case of a perfect
slip at the gas area (Philip 1972; Lauga & Stone 2003; Cottin-Bizonne et al. 2004;
Sbragaglia & Prosperetti 2007) and led to

b⊥
eff =

L

2π
ln

[
sec

(
πφ2

2

)]
and b

‖
eff = 2b⊥

eff , (1.1)

where φ2 = δ/L denotes the fraction of the liquid–gas interface (correspondingly,
φ1 = 1 − φ2 is the fraction of solid–gas area), with the typical length scale of the

slipping area δ, and b⊥
eff and b

‖
eff denote effective transverse and longitudinal slip

lengths. Following Bazant & Vinogradova (2008), these are the eigenvalues of the
second-rank effective slip-length tensor beff represented by a symmetric positive
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definite 2 × 2 matrix diagonalized by a rotation:

beff = Sθ

(
b

‖
eff 0

0 b⊥
eff

)
S−θ , Sθ =

(
cos θ sin θ

−sin θ cos θ

)
. (1.2)

Therefore, (1.1) allow us to calculate beff in any direction given by an angle θ (figure 1).
Equations (1.1) provide an upper limit for the effective slip lengths and in many

situations it would be expected to overestimate them. One reason is the possible
meniscus curvature, which has been clarified in some recent works (Sbragaglia &
Prosperetti 2007; Hyväluoma & Harting 2008; Davis & Lauga 2009) and another
reason is viscous dissipation taking place in the underlying gas phase. Indeed, the
more realistic ‘gas cushion model’ (Vinogradova 1995) predicts the finite slip length
at the slipping area

b = e

(
η

ηg

− 1

)
≈ e

η

ηg

, (1.3)

where e is the thickness of the gas layer, η is the viscosity of liquid and ηg is
the viscosity of gas. Taking into account that under typical conditions η/ηg ≈ 50,

the variation of the SH texture height, e, in the typical interval 0.1–10 µm (Quere
2005) gives b = 5–500 µm, i.e. b might be as small as typical L or even less. For
this reason, it is attractive to consider this experimentally relevant situation. However,
despite its fundamental and practical significance, pressure-driven flow over partial slip
stripes has received little attention. This has been studied numerically (Cottin-Bizonne
et al. 2004; Priezjev, Darhuber & Troian 2005; Ybert et al. 2007). Nevertheless, no
analytical resolution of the Stokes equation with this set of boundary conditions has
been performed up to now.

In this paper, we provide analytical solutions to pressure-driven flows over SH
stripes. In § 2 we formulate the problem and derive expressions for the effective slip
for longitudinal and transverse stripes, which allow us to obtain a solution for any
orientation of stripes with respect to a gradient of pressure. In § 3 we compare our
results with numerical calculations performed by C. Cottin-Bizonne and C. Barentin
using the method developed in Cottin-Bizonne et al. (2004) and discuss implications
for the use of SH stripes to control hydrodynamic flows. We conclude in § 4.

2. Model and analysis
We consider a pressure-driven flow past an idealized flat periodic striped SH

surface in the Cassie state (sketched in figure 1), where the liquid–solid interface has
no slip (b1 = 0) and the liquid–gas interface has partial slip (b2 = b). Our results apply
to a single surface in a thick channel (H � max{L, b}), but not to thin channels
(H � min{L, b}) where the effective slip scales with the channel width (Feuillebois
et al. 2009). The origin of coordinates is placed in the plane of the liquid–gas interface
above the middle of the slot. The x-axis is defined along the pressure gradient, while
the y-axis is aligned across the channel. According to Bazant & Vinogradova (2008)

the general problem reduces to computing the two eigenvalues, b
‖
eff and b⊥

eff , which
attain the maximal and minimal directional slip lengths, respectively.

The fluid flow satisfies Stokes equations

η∇2u = ∇p, ∇ · u = 0, (2.1)
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where u is the velocity vector, and the applied pressure gradient is parallel to the
x-axis direction:

∇p0 = (−σ, 0, 0). (2.2)

The slip boundary conditions at the channel walls are defined in the usual way:

u(x, 0, z) = b(x, z) · ∂u
∂y

(x, 0, z), ŷ · u(x, 0, z) = 0, (2.3)

u(x, H, z) = −bH · ∂u
∂y

(x, H, z), ŷ · u(x, H, z) = 0. (2.4)

Here the local slip length b(x, z) is generally the function of both x and z coordinates.
For simplicity, we now consider here the case bH = 0. As the problem is linear in u,
we seek the solution in the form

u = u0 + u1, (2.5)

where u0 is the velocity of the flow over the homogeneous plane with the no-slip
condition:

u0 = (u0, 0, 0), u0 = − σ

2η
y2 + C∗

0y, (2.6)

C∗
0 ≡ ∂u0

∂y
(y = 0) =

σH

2η
, (2.7)

and u1 is the perturbation of the flow, which is caused by the presence of the texture
and decays far from the bottom of the channel.

We are interested in the effective slip length beff of the lower surface, which is
defined as

beff =
〈us〉〈(
∂u

∂y

)
s

〉 , (2.8)

where ‘〈·〉’ means the average value in plane xOz.

2.1. Longitudinal stripes

In this case the problem is homogeneous in x direction (∂/∂x = 0). The slip length
b(x, z) = b(z) is periodic in z with period L. The elementary cell is determined as
b(z) = b at |z| � δ/2, and b(z) = 0 at δ/2 < |z| � L. In this case velocity u1 = (u1, 0, 0)
has only one non-zero component, which can be determined by solving the Laplace
equation with the boundary conditions discussed above. By choosing L/(2π) as the
length scale and σL2/(4π2η) as the velocity scale we obtain the following in the
dimensionless form:

u1(y, z) =
a0

2
+

∞∑
n=1

an cos(nz)e−ny. (2.9)

(The sine terms vanish due to symmetry.) Condition (2.3) leads to the dual
trigonometric series

a0

2
+

∞∑
n=1

an

(
1 +

2πb

L
n

)
cos(nz) =

2πb

L
C0, 0 < z � c, (2.10)

a0

2
+

∞∑
n=1

an cos(nz) = 0, c < z � π, (2.11)
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where c = πφ2 and C0 = C∗
0 · 2πη/(σL) = πH/L. To solve these series we assume that

a0

2
+

∞∑
n=1

an cos(nz) = cos(z/2)

∫ c

z

h(t) dt√
cos z − cos t

, 0 < z � c. (2.12)

According to Sneddon (1966), we then get

a0 =
2

π

[
π√
2

∫ c

0

h(t) dt

]
, (2.13)

an =
2

π

[
π√
2

∫ c

0

h(t) (Pn(cos t) + Pn−1(cos t)) dt

]
, n = 1, 2, 3, . . . , (2.14)

where Pn is the Legendre polynomial, and one can then show that the effective slip
length is given by

b
‖
eff =

L

2π

a0

2C0

. (2.15)

By integrating (2.10) in the interval [0, z], and substituting (2.12) and (2.14) we obtain
(0 < z � c)

2πb

L

∫ z

0

h(t) dt√
cos t − cos z

= sec
z

2

[
2πb

L
C0z −

∫ z

0

cos

(
ξ

2

)∫ c

ξ

h(t) dt√
cos ξ − cos t

dξ

]
.

(2.16)
We further change the order of integration in brackets to get

∫ z

0

cos

(
ξ

2

) ∫ c

ξ

h(t) dt√
cos ξ − cos t

dξ =

∫ z

0

h(t)

∫ t

0

cos

(
ξ

2

)
dξ

√
cos ξ − cos t

dt

+

∫ c

z

h(t)

∫ z

0

cos

(
ξ

2

)
dξ

√
cos ξ − cos t

dt . (2.17)

The evaluation of (2.16) gives

∫ z

0

cos

(
ξ

2

)
dξ

√
cos ξ − cos t

=
√

2 · arcsin

⎛
⎜⎝sin

z

2

sin
t

2

⎞
⎟⎠ , (2.18)

so that we get

2πb

L

∫ z

0

h(t)dt√
cos t − cos z

= sec
z

2

⎡
⎢⎣2πb

L
C0z − πa0

2
+

√
2

∫ c

z

h(t) arccos

⎛
⎜⎝sin

z

2

sin
t

2

⎞
⎟⎠ dt

⎤
⎥⎦ .

(2.19)

This can be simplified by neglecting the last term in parentheses, which is small as
compared to the main term πa0/2 (due to properties of arccos (sin(z/2)/sin(t/2))) and,
thus,

h(t) =
2

π

d

dt

∫ t

0

sin
ξ

2√
cos ξ − cos t

⎛
⎜⎝C0ξ − a0π

2 · 2πb

L

⎞
⎟⎠ dξ, (2.20)
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whence

a0 =
2
√

2

π

⎡
⎢⎣C0 · π

√
2 ln

(
sec

c

2

)
− a0π

2 · 2πb

L

·
√

2 ln
(
sec

c

2
+ tan

c

2

)⎤
⎥⎦ . (2.21)

In what follows,

b
‖
eff =

L

π

ln

[
sec

(
πφ2

2

)]

1 +
L

πb
ln

[
sec

(
πφ2

2

)
+ tan

(
πφ2

2

)] . (2.22)

2.2. Transverse stripes

In this case the pressure gradient depends on x, so that it is convenient to introduce
a stream function ψ(x, y) and the vorticity vector ω(x, y). The two-dimensional
velocity field corresponding to the transverse configuration is represented by u(x, y) =
(∂ψ/∂y, −∂ψ/∂x, 0), and the vorticity vector ω(x, y) = ∇ × u = (0, 0, ω) has only one
non-zero component, which is equal to

ω = −∇2ψ. (2.23)

The solution can then be presented as the sum of the base flow with homogeneous
no-slip condition and its perturbation due to the presence of stripes

ψ = Ψ0 + ψ1, ω = Ω0 + ω1, (2.24)

where Ψ0 and Ω0 correspond to a typical Poiseuille flow:

Ψ0 = −σ

η

y3

6
+ C∗

0

y2

2
, Ω0 =

σ

η
y − C∗

0 . (2.25)

The problem for perturbations ψ1 and ω1 of the stream function and z-component
of the vorticity vector reads

∇2ψ1 = −ω1, ∇2ω1 = 0, (2.26)

which can be solved by applying boundary conditions (2.3) and (2.4) that take the
following form: (Priezjev et al. 2005):

∂ψ1

∂y
(x, y = 0) = b(x) ·

[
C∗

0 − ω1(x, y = 0)
]
, (2.27)

∂ψ1

∂y
(x, y = H ) = 0, (2.28)

and an extra condition that reflects our definition of the stream function

ψ1(x, y = 0) = 0. (2.29)

This can be solved exactly to get

ω1(x, y) =
α0

2
+

∞∑
n=1

αn cos(λnx)e−λny, (2.30)

ψ1(x, y) = −α0

4
y2 + β0y +

∞∑
n=1

(
βn +

αn

2

y

λn

)
cos(λnx)e−λny, (2.31)
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where λn = (2πn)/L is the wavenumber. Condition (2.28) leads to β0 = α0H/2, and
(2.29) gives βn = 0.

Applying boundary conditions, we obtain another dual series, which is similar to
(2.10) and (2.11):

a0

(
1 +

b

H

)
+

∞∑
n=1

an

(
1 + 2 · 2πb

L
n

)
cos(nx) =

2πb

L
C0, 0 < x � c, (2.32)

a0 +

∞∑
n=1

an cos(nx) = 0, c < x � π. (2.33)

Here

a0 =
4π2η

σL2
β0, an =

αn

2n

2πη

σL
, (2.34)

and b⊥
eff = (L/2π)(a0/C0). Since b/H is negligibly small, the dual series can be

simplified to obtain

b⊥
eff =

L

2π

ln

[
sec

(
πφ2

2

)]

1 +
L

2πb
ln

[
sec

(
πφ2

2

)
+ tan

(
πφ2

2

)] . (2.35)

2.3. Arbitrary direction

Here we consider the situation where the pressure gradient is aligned at the angle θ

to the stripes. The surface velocity us = (us, 0, ws) has only two non-zero components.
We establish the coordinate system so that −∇p0 is parallel to the x-axis. According
to Bazant & Vinogradova (2008),

〈us〉 = beff ·
〈(

∂u
∂y

)
s

〉
, (2.36)

where beff is given by (1.2). Average components of surface velocity then read

〈us〉 =
(
b

‖
eff cos2 θ + b⊥

eff sin2 θ
)

· C∗
0 , (2.37)

〈ws〉 =
(
b

‖
eff − b⊥

eff

)
sin θ cos θ · C∗

0 . (2.38)

The absolute value of the slip velocity on the striped SH surface |U s | and the angle
ϕ between the driving force (−∇p0) and U s are then given by

|U s | =
σH

2η

√
(b

‖
eff cos θ)2 +

(
b⊥

eff sin θ
)2

, tan ϕ =

(
b

‖
eff − b⊥

eff

)
sin θ cos θ(

b
‖
eff cos2 θ + b⊥

eff sin2 θ
) . (2.39)

3. Discussion
Figure 2(a) shows the theoretical eigenvalues of the slip-length tensor beff for

slipping area fraction φ2 = 0.5 as a function of the slip length b calculated using (2.22)
and (2.35). In addition, we plot the data for tilted stripes (θ = π/4). Also included in
figure 2(a) are results of a numerical solution of the Stokes equations performed by C.
Cottin-Bizonne and C. Barentin using the method developed in Cottin-Bizonne et al.
(2004). The agreement between the theoretical and simulation data is very good for
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Figure 2. (a) Eigenvalues b
‖
eff (dashed curve) and b⊥

eff (solid curve) of the slip-length tensor beff

for stick-slip stripes of period L and slipping area fraction φ2 = 0.5 as a function of the local
slip length b of this area. The dashed–dotted curve represents the effective slip in the direction
of driving force for tilted (θ = π/4) stripes. Symbols show numerical results. (b) The ratio of
theoretically predicted eigenvalues of the slip-length tensor beff (solid curves) and corresponding
results of numerical modelling (symbols). From left to right, φ2 = 0.05, 0.5 and 0.95.

all φ2 and b/L, but at b/L = O(1) there is some small discrepancy, suggesting that our
formulas slightly underestimate the effective slip, which is likely due to a simplification
of (2.19). The same trends were observed for other values of φ2. Still, our analytical
expressions for the effective slip, (2.22) and (2.35), appear to be surprisingly accurate,
especially taking into account their simplicity. The same remark concerns the use of
tensorial formula (1.2).

Our results imply that the flow past stripes is controlled by the ratio of the local
slip length b to texture period L. At b/L � 1 our expressions for beff turn to (1.1),
suggested earlier for a perfect local slip. As expected, the effective slip decreases when
b/L = O(1) and smaller. Interestingly, this ratio also controls the anisotropy of the
flow. Indeed, combining (2.22) and (2.35) we get

b
‖
eff = b⊥

eff

⎛
⎜⎜⎝1 +

1

1 +
L

πb
ln

[
sec

(
πφ2

2

)
+ tan

(
πφ2

2

)]
⎞
⎟⎟⎠ . (3.1)

If b/L � 1, the effective slip for parallel stripes, b
‖
eff , is twice that of perpendicular

stripes, b⊥
eff , as it was in the case of a perfect slip (b2 = ∞) at the liqud–gas interface

(Lauga & Stone 2003; Cottin-Bizonne et al. 2004; Sbragaglia & Prosperetti 2007;
Bahga, Vinogradova & Bazant, 2010). In this case surface anisotropy leads to a truly
tensorial effective slip. However, anisotropy of the flow decreases with a decrease

in b/L, and at small b/L we get b
‖,⊥
eff ∼ b. In other words, at small local slip we

predict simple surface-averaged isotropic flows (independent of orientation), which
means despite the fact that the local slip varies in only one direction, the effective
slip is scalar. These unexpected results are summarized in figure 2(b). This finding
can be understood by using the following simple arguments. Following the advice of
H. A. Stone (2009 private communication), let us consider the average fluid velocity
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Figure 3. Average velocity profiles (φ2 = 0.8) for a longitudinal (a) and transverse (b) flow.
From top to bottom b/L = 1000, 1 and 0.1.

〈us〉 on the SH surface. According to boundary condition (2.3),

〈us〉 =
1

L2

∫ L

0

∫ L

0

us(x, z) dx dz =
1

L2

∫ L

0

∫ L

0

b(x, z)

(
∂u

∂y

)
s

dx dz. (3.2)

For transverse flow this expression takes the form

〈us〉 =
1

L

∫ δ

0

b

[
C∗

0 +

(
∂u1

∂y

)
s

]
dx = bC∗

0φ2 +
b

L

∫ δ

0

(
∂u1

∂y

)
s

dx, (3.3)

where C∗
0 = (∂u0/∂y)s = constant is, obviously, independent of the relative orientation

of stripes with respect to a pressure gradient, since u0 represents the solution of the
problem for a smooth homogeneous surface. The same arguments apply in the
longitudinal case, where the only difference would be the integration over z instead of
x. Therefore, when b is a small value (b/L = O(ε)), the second term in (3.3) may be
neglected as an infinitely small value of higher (second) order because u1 � ε, and,
thus, (

beff

)
b→0

≈ bφ2 + O
(
ε2

)
(3.4)

is independent of an external force direction. The anisotropy of the effective slip is
determined by the second integral term in (3.3), which dominates when b/L = O(1)
and larger. These results suggest that both the value (upper limit) of the effective
slip length and the anisotropy of the flow are controlled by the smallest characteristic
length of the problem (in our case, b or δ).

Finally, we present average velocity profiles in longitudinal (θ =0) and transverse
(θ = π/2) configurations for different values of the local slip length b (figure 3). Mean
flow remains two-dimensional and parabolic when the driving force is applied in
main directions, yet both the average slip velocity at y = 0 and the maximal velocity
value at the middle of the channel depend on b. For arbitrary θ the flow is essentially
three-dimensional as the orthogonal velocity component appears due to the tensorial
effective boundary condition (2.36).

4. Conclusion
We have analysed a pressure-driven flow over striped SH surfaces. Unlike the

previous approach, we have obtained general analytical solutions for any value of
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local partial slip. We have confirmed that the hydrodynamic response of a striped
slipping surface is generally anisotropic. Our main conclusion is that both effective
slip and flow anisotropy are controlled by the ratio of local slip at the gas area to
texture size. When this ratio is large, our results are closely related to those of Lauga
& Stone (2003), Cottin-Bizonne et al. (2004), Sbragaglia & Prosperetti (2007) and
Bahga et al. (2010), and surface anisotropy leads to anisotropy of effective slip. For
a small ratio we predict not only a decrease in the effective slip, but also a different
isotropic response of the striped SH surface.
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